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Abstract
When suitably generalized and interpreted, the path integral offers an alternative
to the more familiar quantal formalism based on state vectors, self-adjoint
operators and external observers. Mathematically one generalizes the path-
integral-as-propagator to a quantal measure µ on the space � of all ‘conceivable
worlds’, and this generalized measure expresses the dynamics or law of motion
of the theory, much as Wiener measure expresses the dynamics of Brownian
motion. Within such ‘histories-based’ schemes new and more ‘realistic’
possibilities open up for resolving the philosophical problems of the state-
vector formalism. In particular, one can dispense with the need for external
agents by locating the predictive content of µ in its sets of measure zero: such
sets are to be ‘precluded’. But unrestricted application of this rule engenders
contradictions. One possible response would remove the contradictions by
circumscribing the application of the preclusion concept. Another response,
more in the tradition of ‘quantum logic’, would accommodate the contradictions
by dualizing � to a space of ‘co-events’ and effectively identifying reality with
an element of this dual space.

PACS numbers: 03.65.Ta, 03.65.−w, 05.40.−a, 31.15.Kb

1. Introduction

Reading the literature on ‘quantum foundations’, you could easily get the impression that
the problems begin and end with non-relativistic quantum mechanics. Perhaps most authors
have limited themselves to this special case because they thought that no essentially new
philosophical questions arose in relativistic quantum field theory and quantum gravity or
perhaps they merely felt that non-relativistic quantum mechanics was hard enough to interpret
without bringing in the further complications of relative simultaneity and a dynamical causal
structure. This feeling is true, no doubt, but it could also be that an overemphasis on the
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non-relativistic case has led people in directions they might not have taken had they thought
in a broader context.

Thus, for example, the concept of ‘subsystem’ takes centre stage in many interpretations
of the quantum formalism. In ‘chemistry’ (the theory of nuclei, electrons and Coulombic
interaction), one could perhaps construe a subsystem as a definite collection of particles, but
what could it mean in the context of quantum field theory in curved spacetime, say? Another
example is the concept of state vector or ‘wavefunction’, which seems to be tied (in spirit if not
always in the letter) to a particular moment of time, while its unitary ‘evolution’ takes place
between designated spacelike hypersurfaces. Locating one’s basic mathematical structure on
a hypersurface is already uncomfortable in a relativistic spacetime, but in relation to quantum
gravity it raises not only technical1 but severe conceptual difficulties (the notorious ‘problems
of time’).

For reasons such as these, anyone who thinks seriously about quantum gravity must at
some point ask themselves whether the notion of ‘history’ does not furnish a better starting
point than the Hilbert spaces, state vectors and operator observables that are so familiar
from textbooks. Or to pose the question another way: is quantum mechanics about the
wavefunction and its unitary evolution or is it about things such as electrons, quarks and
electromagnetic fields? And if the latter, then is an electron to be described three dimensionally
as (for example) a time-dependent point of space or four dimensionally as a worldline (not
necessarily completed)? A ‘realistic’ and ‘spacetime’ approach of the sort suggested by
the last two sentences may be termed ‘histories-based’. Such an approach will of course
diverge technically from the state-vector approach, but more importantly for this paper I am
claiming that it also differs at the purely philosophical, interpretive level, and specifically that
it suggests new solutions to some of the recurring philosophical puzzles that have sprung from
the quantum formalism.

To produce a histories-based formulation of quantum theory means in essence to
emancipate the path integral from its role as an auxiliary mathematical device (a mere tool for
computing propagators or S-matrix elements) and to make of it the fundamental dynamical
object of the theory. To that end, one must bring out more explicitly what it is that the path
integral really computes, and having done so one must then complete the story by explaining
how this newly conceived path integral can play the role played in classical mechanics by the
‘laws of motion’—how in particular it can make possible the manifold (though still incomplete)
predictions that lend quantum mechanics its great practical utility.

Fortunately, much of this work of reformulation has already been carried out; and we can
claim to know—or at least to have a very good candidate for—what this reconceived path
integral is in mathematical terms. It is a mathematical object that can be represented either as
a sort of quadratic measure on � or as a Hermitian measure on �×�, where � is the ‘sample
space’ in the sense of probability theory.

2. The path integral as a quadratic measure

Any theory for which a path integral can be defined possesses a sample space � over which
the integration takes place2; but the kind of element γ that comprises � varies from theory to

1 The technical difficulties are especially severe in the context of causal set theory, where the obvious analogue of a
spacelike hypersurface is a maximal antichain. But since an antichain has by definition no intrinsic structure of its
own, one lacks an analogue of the induced metric, which in the continuum is supposed to serve as the argument of the
quantum gravitational wavefunction. Extrinsically induced structures do exist and can be very useful for kinematic
purposes as in [1]; but they seem too ad hoc to enter into a basic dynamical law.
2 Fermionic path ‘integrals’ are excepted here. As normally defined, they are not integrals at all. See, however, [2].
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theory. In n-particle quantum mechanics, for example, each γ would be a set of n trajectories;
while for a scalar field theory, it might be a real or complex function on spacetime. Often
the members of � are called ‘fine-grained histories’ or simply ‘histories’; sometimes they
are called ‘paths’ or ‘trajectories’. From the perspective of classical logic, � is the space of
‘possible worlds’, since each of its members represents as complete a description of physical
reality as is conceivable in the theory.

Now the path integral is normally conceived of as a complex measure on � (or,
more accurately, on subsets of � consisting of trajectories with fixed endpoints). As
such, it serves to evolve wavefunctions by giving the net amplitude for (say) a particle to
‘propagate’ from one spacetime point to another. But in quantum mechanics as ordinarily
understood, such amplitudes, and indeed the wavefunction itself, are only intermediaries in
the computation of probabilities. The object that yields these probabilities directly is what
I will call the quantal measure µ, a function that assigns to a subset A ⊆ � a real number
µ(A) � 0. Since this characterization is a bit vague, let us examine it more closely in the
context of non-relativistic point-particle mechanics, where the expression for µ is relatively
simple.

To that end, let A be a subset of � defined by properties of γ that refer only to its restriction
to the time-interval t ∈ [t0, T ] and let ρ(q, q̄) be the density matrix at time t0. Then, the
quantal measure of A is given by3

µ(A) =
∫

γ∈AT

dν(γ )

∫
γ̄∈AT

dν(γ̄ ) eiS(γ )−iS(γ̄ )δ(γ (T ), γ̄ (T ))ρ(γ (t0), γ̄ (t0)), (1)

where AT denotes the set of all truncated trajectories that can be derived from elements of A

by restriction to [t0, T ], S(γ ) is the action
∫

L dt of γ , ν is some ‘base measure’ on the space
�T of truncated histories with respect to which the integration is performed and γ (t) denotes
the location (in configuration space Q) of γ at time t. (Note that the ‘truncation time’ T can
be chosen arbitrarily, as long as it is late enough for it to be decided by then whether or not
γ ∈ A.) It is then easy to check that, according to the standard quantum rules, if the result of
a measurement is expressed by the position of a ‘pointer’ at a given time, and if Ai is the set
of histories for which the atoms composing the pointer are in the ith position at that time, then
µ(Ai) is the probability of that experimental outcome. (Strictly speaking, this interpretation
of µ(Ai) as an objective probability goes beyond the standard rules, which only tell us that
µ(Ai) is the probability that the pointer would be found in the ith position if measured by an
observer external to the entire experimental set-up. However, our only purpose here is to gain
some familiarity with µ and some intuition for its practical meaning. Later we will attempt a
more general and direct interpretation of µ not based on the—essentially classical—concept
of probability.)

Now the whole point of introducing the quantal measure was that it is histories-based and
it stands on its own two feet, without needing to refer to the apparatus of operator algebras,
expectation values, state vectors, etc that constitutes the terrain on which most discussions of
quantum philosophy take place. We would thus like to characterize µ in a general manner,
without referring to any specific expression like (1) above. From a mathematical point of
view, what makes quantum physics different from classical physics (in which I am including
stochastic processes) is its ‘quadratic nature’: probabilities are squares of sums of elementary
amplitudes, rather than simple sums of elementary probabilities. Physically, this corresponds
to the phenomenon of interference, and the quadratic character simply expresses the fact
that quantum interference involves pairs of alternatives, but never triples (except indirectly as

3 When non-bosonic identical particles are involved, one must insert into (1) an additional global phase-factor
χ(γ, γ̄ ) that depends on the topological class to which the combined path γ ∪ γ̄ belongs.
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induced by the pairwise interference). For the purposes of this paper, the quadratic character
is not absolutely essential, but as it expresses a very deep feature of quantum mechanics it
seems appropriate to dwell on it for a bit. This will also let me define a certain condition
of ‘strong positivity’ that seems to play an important role in the detailed working out of any
interpretation of the quantal measure.

The quadratic nature of µ can be captured in two ways, either directly or in terms of a
function D which is effectively a complex measure on �×�. The former characterization [3]
rests on the following sum rule for mutually disjoint subsets A,B,C of �, which generalizes
the simple additivity of classical probabilities:

µ(A � B � C) − µ(A � B) − µ(B � C) − µ(A � C) + µ(A) + µ(B) + µ(C) = 0. (2)

(The symbol � denotes disjoint union.) This sum rule sits at level 2 of a hierarchy of sum
rules [3] limiting the ‘degree’ of µ. A classical probability-measure µ is additive and resides
at level 1; a quantal µ resides at level 2, which includes level 1 as a special case, etc4.

It bears emphasis that (2) is an unconditional relationship that can only fail if quantum
mechanics in the most general sense fails5. It can be thought of concretely in terms of a three-
slit diffraction experiment, and conversely one could perform such an experiment as a very
direct null test of the validity of the basic quantal assumptions. More generally, any experiment
in which three mutually exclusive alternatives were made to interfere would provide a similar
null test.

The above sum rule expresses the quadratic nature of µ very directly, but it is not as
simple as one might wish. Fortunately, one can solve it identically with the ansatz,

µ(A) = D(A,A), (3)

where D (called for historical reasons a decoherence functional) will be required to fulfil the
following axioms:

Hermiticity D(A,B) = D(B,A)∗,
Additivity D(A � B,C) = D(A,C) + D(B,C),
Strong positivity for any finite collection of subsets A1, A2, . . . , An, the n × n Hermitian
matrix Mij = D(Ai,Aj ) is positive semidefinite (it has no negative expectation values).

To illustrate these axioms, let me just mention a couple of lemmas they imply, which are
useful in connection with the notion of preclusion that we will turn to shortly:

(i) µ(A) = 0 ⇒ D(A,B) = 0, whatever B may be;
(ii) µ(A) = µ(B) = 0 ⇒ µ(A ∪ B) = µ(A ∩ B).

(The first is a consequence of strong positivity; the second follows from the first together with
a certain identity that generalizes the classical principle of ‘inclusion–exclusion’.)

Having made the acquaintance of the quantal measure and its associated decoherence
functional, we now have the general form of a histories-based quantum theory. The kinematics
of such a theory6 is expressed through its sample space �; its dynamics is expressed through
µ and D. What is still lacking, however, is a finished conceptual bridge to take us from this

4 A function µ satisfying (2) is quadratic in the following sense. One can view µ as a kind of ‘integral’ taking 0–1-
valued step functions to complex numbers; and then (2) is the condition that this integral extends to a homogeneous
quadratic form on linear combinations of the step functions. (This does not contradict the fact that level 2 includes
level 1. If µ is additive it will of course also extend to a homogeneous linear form on linear combinations of step
functions.)
5 Note in this connection that whereas (1) produces complex amplitudes and is consistent only in the presence of
unitarity, (2) presupposes neither of these features. (Conversely, it sheds no light on why these features occur in
nature.)
6 I almost wrote ‘the ontology of such a theory’, but we will see that this would have been too hasty.
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formal structure to its physical meaning—in particular to clarify how one can base predictions
on µ without falling back on the problematic notions of macroscopic system or external
observer.

3. The preclusion concept: towards an interpretation of µ

We have already introduced the sample space � and the quantal measure µ, which assigns
non-negative real numbers to certain7 subsets of �. In the parlance of probability theory, such
a subset is called an event, and I will follow this usage, although the phrase ‘potential event’
might be less subject to misinterpretation. As subsets, the events combine with each other in
such a way as to form a Boolean algebra A, and this algebraic structure will play a major role
for us later in connection with ‘quantum logic’.

We have already seen that for some—more or less well defined—set of ‘instrument
events’ A, µ(A) can be interpreted as an experimental probability. This furnishes an important
‘boundary condition’ that must ultimately be satisfied by any interpretation that we come up
with, but could it be more than that? Suppose that one could identify within A a subalgebra
A

macro consisting of ‘the macroscopic events’ and that the restriction of µ to A
macro could be

proven to obey not only (2) but also the level-1 sum rule, µ(A � B) − µ(A) − µ(B) = 0.
In that case, µ would define a probability functional on A

macro and one could try to maintain
that this exhausted its physical meaning. In doing so, one would be adopting the standpoint
of ‘decoherent’ or ‘consistent’ histories [4]. But in this direction one encounters a series
of problems, of which the first and most troublesome at a practical level is the difficulty in
coming up with a sufficiently precise and tractable definition of ‘macroscopic’ (that is of the
subalgebra A

macro). Lacking this, one risks obtaining either no interpretation at all (if no
satisfactory subalgebra can be shown to exist) or a multitude of conflicting interpretations (if
more than one A

macro offers itself). One might also worry (with a touch of whimsy) that an
interpretation of this sort denies a basic aspect of quantum mechanics because it postulates,
essentially as a matter of definition, that alternative macroscopic events cannot interfere, even
in principle. More serious to my mind, though, is the fact that, in itself, such an interpretation
fails to offer us a picture of quantum reality (this being arguably the most important task of
any interpretation). Or to the extent that it does suggest such a picture, that picture tends to
deny the existence of the microworld. It leads us to identify reality not with an individual
history γ , but with an element of A

macro, and this would withhold meaning from any statement
referring to individual atoms or other forms of microscopic matter.

For reasons such as these, I do not think that we could rest content with any interpretation
founded on a distinction between A and A

macro, even if it could overcome the technical
problems alluded to above. But is there an alternative? Can we draw predictive inferences
from µ without invoking the word ‘macroscopic’? To do so, we need to move away from
the notion of probability, and one way of doing so is to replace it by the notion of ‘precluded
event’, this being an event that ‘to all intents and purposes cannot happen’. Indeed, probability
is reducible to this notion on one view of the matter, whence to take preclusion as the basis of
our interpretation of the quantal measure would only be to carry over to the quantal situation, a
time-honoured idea for interpreting µ in the classical world. The basic idea, then, is to reduce
all predictions to statements of the form: ‘the event A ∈ A has zero measure µ(A), therefore
A is precluded’. Such a statement applies as well to microscopic events as to macroscopic
ones. The prediction which it makes is of a type that one might call ‘definite but incomplete’.

7 Exactly which subsets of � belong to the domain of µ is a technical question whose answer will vary from theory
to theory. In the special case where � is a finite set, all of its subsets would normally be included in the domain.
(Classically, the subsets in dom(µ) are said to be ‘measurable’.)
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4. The antinomy and three responses to it

4.1. The problem with preclusion

The principle we are aiming to hold onto affirms that events of measure zero (or of sufficiently
small measure) ‘do not happen’. Implicit in any principle like this is some conception of
reality, with respect to which one could say, in any given case, whether or not a given A ∈ A

did or did not actually happen; and the most obvious and straightforward conception is the
following. Reality (that which exists or happens) would be a definite member γtrue of �, and
the statement that an event A ⊆ � ‘did not happen’ would simply mean that γtrue was not to
be found among the elements of A. (If the event ‘rain today’ is not happening, that simply
means that the ‘actual world’ γtrue is not among those ‘potential worlds’ γ in which it is raining
today.) This particular ‘logic of being’ is so ingrained in us that it is at first hard to think of an
alternative8; nevertheless it may well turn out that we need an alternative if we are to develop
the preclusion concept in a satisfactory manner. The problem, in a nut shell, is that there are
‘too many preclusions’.

An elementary illustration of the difficulty is furnished by the three-slit experiment referred
to earlier, which we may idealize for present purposes as a source emitting spinless particles
which impinge on a diffraction grating with three slits, labelled a, b and c. Let A (respectively
B,C) be the set of γ such that the particle traverses slit a (respectively b, c) and arrives at
p, where p is a spacetime region—idealized as a point—which is aligned with the central slit
and which consequently sits within a ‘bright band’ of the diffraction pattern. For such a p, the
measure µ(A∪B ∪C) of the set of all worldlines that arrive at p is nonzero, corresponding to
the fact that if we look for the particle at p, we will frequently find it there. On the other hand,
we can choose the separation between the slits so that, when taken in pairs (a, b) or (b, c), the
amplitudes cancel, and correspondingly the measures µ(A∪B) and µ(B∪C) will also vanish.
An unrestricted preclusion rule would then entail that the actual trajectory γtrue could belong
neither to A∪B nor to B ∪C, whence it could not belong to (A∪B)∪ (B ∪C) = A∪B ∪C,
whence it could not arrive at p at all—a false prediction. Although in this case, the particle
could still go elsewhere, the Kochen–Specker set-up gives rise to an example [5] where every
possibility without exception would be ruled out by an unrestricted preclusion rule. A theory
cannot be more self-contradictory than that!

4.2. First response: it’s here, it’s queer, get used to it!

In a certain sense the same paradox is already present in classical probability theory, where,
for example, each single Brownian path γ taken individually is of measure zero, and therefore
‘cannot occur’—or ‘almost surely’ cannot occur, in the stock phrase that mathematicians
favour. In strict logic, this would seem to be a blatant inconsistency since one γ really does
occur, but it has not stopped people from applying the probability calculus to good effect.
They have just grown used to such paradoxes and learned to live with them.

Could something similar happen with the paradoxes flowing from quantal preclusion?
Granted, they are made quantitatively worse by the effects of interference (one needed an
infinite number of preclusions to arrive at a contradiction in the Brownian motion example,
but only two in the three-slit example), but could we nonetheless grow used to them and
gradually cease to be troubled by them9? If that were possible, we could embrace the
unrestricted preclusion rule with no worse a conscience than we feel in connection with the

8 Fay Dowker has named as ‘Axiom 0’ the assumption that one and only one member of � is realized.
9 Bob Griffiths seemed to recommend this as a long-term goal in a seminar at Perimeter Institute.
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paradoxes of ordinary probability theory. Perhaps future generations will think this way, but I
personally would not bet on it. It might even turn out that, in contrast, the effort to understand
the quantal measure will end up clarifying the meaning of classical probability, given that the
latter is but the classical shadow of the former.

4.3. Second response: limited preclusion

A second way out of the impasse might be to restrict the application of the preclusion rule
sufficiently so that no contradictions remained among the surviving preclusions. In another
place [6], I have written about this approach and its relationship to that of the decoherent
historians. I will not attempt to reproduce those reflexions here, but only to append a few
remarks on the problems and remaining possibilities of the approach, which takes inspiration
from the apparent absence of contradictions among the preclusions induced by measurements.
One seeks to abstract from measurement situations some feature that could make sense even
in the microworld, but still serve as a seal of consistency wherever it is found. Specifically,
one sees in a measurement a special type of correlation, and one retains only those preclusions
which express such correlations10.

Not much effort has been devoted to developing this approach, unfortunately, but two
potential problems have been identified, and I would like to sketch them for the benefit of
the reader who is familiar with [6] or has thought along similar lines. The first problem,
mentioned already in [6], concerns ‘conditioning’ on the past or on one’s knowledge thereof.
The question is whether one needs to introduce into the scheme a notion of ‘conditional
preclusion’ or ‘conditional measure’, corresponding to the classical notion of conditional
probability. Such a notion would express in a certain sense the ‘collapse of the state
vector’, but it has never been clear whether it is really needed, or whether, in contrast,
all valid predictions could be made without it, on the basis of ‘absolute’ (unconditional)
preclusions11. If it turns out that it is needed, then that will represent an important lacuna in
the interpretation.

The second problem, that of ‘specious diremptions’, is harder to describe without referring
to the details of the scheme elaborated in [6]. It springs from an apparent defect in the way
that correlations were characterized therein, and it has the effect that essentially any event of
measure zero gets re-validated as a preclusion, since it can be embedded in what counts as a
correlation. Evidently, nothing would be gained by such a scheme in the way of consistency.
I tend to believe that the problem is only a technical one that could be fixed by a more
careful definition of correlation, but a ground for doubt is that the task is reminiscent of
that of distinguishing a mere correlation between two variables from a true cause-and-effect
relationship between them.

A final problem, or at least an inconvenience, is the extra work required to identify those
sets of measure zero that correspond to correlations of the required type. This is reminiscent
of the difficulty of identifying decohering variables in the consistent histories approach. In
the context of quantum gravity, where even the causal structure is dynamical, such difficulties
tend to evolve into problems of principle. Certainly, life would be simpler if one could simply
affirm that all subsets of measure 0 were precluded.

10 The word ‘diremption’ has been used for a correlation of this sort. It denotes a ‘splitting of the whole into two
parts’. Strictly speaking, however, the type of three-way correlation utilized in [6] would have to be called something
like a ‘triremption’.
11 If the practitioners of the Bohmian interpretation or of the ‘many-worlds’ interpretation are correct in their
understanding of ‘branch formation’, then a separate notion of conditional preclusion would be superfluous. However,
I have never been able to convince myself that distinct ‘branches of the wavefunction’ are articulated as sharply as
they claim they are.
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4.4. Third response: a modified logic

Let us try to adhere to the original idea, according to which, without exception, the vanishing
of µ(A) entails the preclusion of A. We have seen how this rule engenders contradictions of
which a simple example was provided by three-slit diffraction. In that example, the slits were
labelled a, b, c, and the available preclusions apparently entailed the false conclusion that the
particle could never arrive at p. Imagining an instance in which the particle actually does go
to p, we have in effect a contradiction between the preclusion of A ∪ B and the preclusion of
B ∪ C. Can we accommodate such contradictions in our logic?

Before trying to answer this question, let me introduce a notation that makes explicit a
distinction which might seem to be empty, but which logicians have routinely drawn between
a proposition or statement and its ‘truth value’. The above subset A, for example, corresponds
to the proposition ‘the particle passes through slit a and arrives at p’, but merely by referring
to A, one does not necessarily assert that this proposition is true. To do that, one assigns the
proposition a truth value of ‘true’. Let us agree to express this by writing φ(A) = 1, with
φ(A) = 0 then signifying that the proposition is false. This distinction between a proposition
and the assertion of the same proposition could strike one as pedantic at best, but it seems less
so when one speaks in terms of the corresponding ‘predicates’ or ‘properties’ (the property in
question in our example being that of ‘traversing the slit A’); and it sounds still less forced
when one employs the grammar of question and answer: to the subset A then corresponds the
question, does the particle pass through slit a (and arrive at p)?, and to φ(A) corresponds the
answer to the question, either yes = 1 or no = 0, as the case may be.

Expressed in terms of φ, our three-slit contradiction appears as follows: φ(A ∪ B) = 0
and φ(B ∪ C) = 0, therefore φ(A ∪ B ∪ C) = 0. Hence, we could avoid the impasse if the
first two equations could hold without the third holding. In question and answer form, this
would amount to the following (thinking of the slits as arranged in the order (a, b, c)):

‘Does the particle avoid the left two slits? Yes.’
‘Does the particle avoid the right two slits? Yes.’
‘Does the particle avoid all three slits? No.’

Or if we assume that ‘the particle avoids a and b’ always has the same truth value as ‘the
particle goes through c’, then the first two lines become:

‘Does the particle go through c? Yes.’
‘Does the particle go through a? Yes.’,

which exhibits the contradiction still more clearly.
To embrace the contradiction is thus to accept that the particle can possess apparently

incompatible attributes. But it is not altogether necessary to use this language. Instead, one
can shift the emphasis and conceive of reality as represented, not by ‘a γ with contradictory
attributes’, but by φ itself. Whichever mode of expression one adopts, a new logic is involved,
one in which the truth value of, for example, ‘X and Y’ does not follow by any universal rule
from the separate truth values of ‘X’ and of ‘Y’.

Classical logic demands that φ be a homomorphism between the event-Boolean algebra
A and the two-element Boolean algebra Z2 of ‘truth values’, meaning that ‘X & Y’ is true if
and only if ‘X’ and ‘Y’ are both true, with similar ‘truth tables’ applying to the other logical
connectives, ‘or’, ‘not’, ‘xor’, etc. Because one can prove (at least when � is a finite set)
that any such mapping can be equated to a unique element of �, identifying reality with a
homomorphism φ : A → Z2 ends up being nothing more than a fancy way of identifying it
with an element of �. That is, it yields nothing new. But more general conceptions of reality
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arise if one modifies either φ or the space (of ‘truth values’) to which it maps12. In the next
section, we will consider a generalization which retains the same two truth values but relaxes
the condition that φ be a homomorphism. Of the fundamental logical connectives, φ will
preserve only the one known as ‘exclusive or’.

5. An illustrative proposal: reality as a co-event

Many variations on the simple idea proposed above are possible, but all of them will describe
reality by means of a particular function φtrue : A → Z2 which generalizes the γtrue of classical
logic in the manner explained above. In choosing among the possible generalizations, it is
useful to construe the event-algebra A as literally an algebra in the strict mathematical sense
of a vector space over a field, in this case the finite field Z2 containing only the two elements
0 and 1. To make this work, however, one must identify the algebraic sum A + B, not with
the set-theoretic union A ∪ B, but with what is usually called ‘symmetric difference’, which
differs from A ∪ B when A and B overlap:

A + B = (A ∪ B)\(A ∩ B) = {γ ∈ � | γ ∈ A ∪ B, γ /∈ A ∩ B}.
With the algebraic product AB taken to be the set-theoretic intersection A ∩ B, all the
axioms for an algebra are then satisfied. For example, multiplication distributes over addition:
A(B + C) = AB + AC, and every event A has an additive inverse −A (namely A itself). Note
that with these definitions A becomes a unital algebra, its unit 1 being the whole sample space
�, because �A = � ∩ A = A. Set-theoretic complementation is then effected just by adding
1: �\A = 1 + A. (In writing things this way, I am not distinguishing between A considered
as a subset of � and A considered as an element of the algebra A. This should not lead to any
confusion, but it does take a little getting used to, especially if one further equates A to the
corresponding predicate. One then has three distinct sets of notation for essentially the same
set of operations: the set-theoretical notation like ‘∩’, the algebraic notation like ‘+’ and the
logical notation like ‘&’!)

That φ classically is a unital algebra homomorphism signifies that it then preserves sum,
product and unit, that is

φ(A + B) = φ(A) + φ(B),

φ(AB) = φ(A)φ(B),

φ(1) = 1.

I will call the first condition linearity and the second multiplicativity. Which of these conditions
shall we retain—if any—and which shall we modify? If we were to drop all of them, the
resulting framework would be essentially vacuous. If we were to keep them all, we would
be back to classical logic. We have already narrowed down the field of possibilities by
choosing to retain Z2 as the ‘codomain’ of φ (rather than generalizing it to, say, a finite field
of characteristic two). With this choice, φ(A) can be only 1 (true) or 0 (false). If we want
to preserve the symmetry between subsets and their complements (that is, if we do not want
to be forced to decide for each predicate, whether to regard it as ‘positive’ or ‘negative’ in
nature), then it is natural to assume that φ(1 + A) = 1 + φ(A), which says that a statement is

12 Logics that generalize Z2 seem to be called ‘modal’. Such modifications have been proposed by many authors,
notably in [7]. ‘Quantum logic’ in the original sense of these words seems to have consisted primarily in replacing A
by the lattice of subspaces of a Hilbert space. It did not seem to put forward any definite proposal for φ, concerning
itself more with probabilities than truth values. The emphasis herein will fall neither on A nor on Z2, but on the
character of the mapping between them.
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true iff its negation is false. But this is a special case of linearity, as long as φ is unital13. It
thus seems natural to make the following choice: retain linearity and drop multiplicativity. It
also seems natural to retain the condition that φ be unital, but we will lose nothing by leaving
that choice open for now.

Let us agree to call a linear function φ : A → Z2 a co-event, and to qualify φ as preclusive
if it assigns 0 to every A ⊆ � of µ-measure zero. Reality, then, is supposed to be a preclusive
co-event14.

Before considering what further conditions we might want our co-events to satisfy, let
us see how linearity and preclusivity work out in the three-slit example described earlier.
Since the subsets A,B and C are mutually disjoint, their unions can be written as simple
sums. Then, because φ has been assumed to be preclusive, we have as before (but with
our new notation): µ(A + B) = 0 implies φ(A + B) = 0 and µ(B + C) = 0 implies
φ(B + C) = 0. The deductive train leading to a contradiction, now gets switched to a new
track, however, because φ(A + B) = 0 and φ(B + C) = 0 no longer combine to imply
φ(A + B + C) = 0. Instead they imply only that φ(A + C) = 0, as proven by the brief
computation, φ(A + C) = φ(A + B + B + C) = φ(A + B) + φ(B + C) = 0 + 0 = 0, where I
have used that B + B = 0 and φ(0) = 0 always15. If we assume further that the particle really
does arrive at p, then we have additionally φ(A + B + C) = 1, which implies in the same way
that φ(A) = φ(B) = φ(C) = 1. This, then, is the unique preclusive co-event φ for which
the particle arrives at p. In particular, there is such a co-event, unlike with classical reasoning,
which drove us to conclude that φ(A + B + C) = 0. In this way, we have avoided the false
prediction.

In the three-slit example, the relevant Boolean algebra A is finite dimensional, which,
over the finite field Z2, implies that A itself is a finite set. Whenever this happens, one may
conveniently represent a co-event as a subset of �. In order to see this, note first that16 any
history γ ∈ � defines a (unital) co-event γ ∗ through the equation γ ∗(A) = �(γ ∈ A), where
the notation �(γ ∈ A) denotes 1 if γ ∈ A and 0 if γ /∈ A. Note further that we can suppose
without loss of generality that � itself is finite, and then the γ ∗ furnish a canonical basis for
A regarded as a vector space over Z2. This means that any co-event φ can be expanded in
terms of γ ∗, and we may therefore identify it with the terms that occur nontrivially in the
expansion. In this limited sense a co-event is nothing but a subset of the sample space (a subset
of odd cardinality if we require that φ be unital). In general, however, � will be infinite, and
the co-events will not be expressible so simply (although finite subsets of � will still yield
co-events). In the three-slit example, our unique co-event was just φ = A∗ + B∗ + C∗ (where
the notation presupposes that we have limited A to the algebra generated by A,B and C).

Our three-slit example illustrates how one may avoid (or perhaps I should say
accommodate) the antinomies engendered by combining preclusion with classical logic, but
it is rather a rudimentary example, and it certainly does not prove that things will always
work out so nicely. Lacking a general theorem to that effect, we can only try the basic ideas

13 If φ is not unital, then necessarily φ(1) = 0. In this case linearity implies that a statement is true iff its negation is
true! In either case, the truth of a statement is determined by that of its opposite, preserving the desired symmetry.
14 A linear mapping from A to the space of scalars Z2 defines an element of the vector space dual to A. Hence, the
nomenclature ‘co-event’. In terms of logical operations, the linearity of φ means that the truth value of (A XOR B)
—its truth or falsehood—still follows from the separate truth values of A and of B, even though—because we have
dropped multiplicativity—the truth value of (A AND B) does not. (Here ‘XOR’ is exclusive or.)
15 The earlier deduction implicitly used multiplicativity, which, had we retained it, would yield φ((A+B)(B+C)) = 0,
and thence φ(B) = 0 since (A + B)(B + C) = AB + AC + BB + BC = 0 + 0 + B + 0 = B. From this follows
φ(A) = φ(A + B) = 0, φ(C) = 0, etc.
16 If the singleton set {γ } belongs to A (as it normally will when |�| < ∞) then it is an atom of A. More generally, any
atom x ∈ A defines a unital co-event x∗ by x∗(y) = �(xy = x). (Like γ ∗, such an x∗ is actually a homomorphism.)
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out on other examples of interest. Let us therefore work out one example more, namely the
EPRB-like gedankenexperiment introduced by Lucien Hardy, which illustrates almost every
known interpretive difficulty.

Before taking up this example, however, we must decide how to deal with the fact that
not every preclusive co-event is really suitable as a potential reality, but only those which, in
a sense still to be fully determined, are ‘elementary’. Perhaps the simplest way to recognize
the problem is to return to classical probability, but with the measure µ regarded now as a
special case of a quantal measure, to which our general scheme can therefore be applied.
Classically, one may encounter sets of measure zero, but never interference, and consequently
every subset of a precluded subset is also precluded. From this, it is not hard to conclude
(once again taking � to be finite) that any γ whose measure is itself nonzero yields the
preclusive co-event γ ∗, and the most general preclusive co-event is an arbitrary sum of these.
On the other hand, we know that the ‘right answer’ in this case (we are just doing classical
physics!) is that reality should be identified with a single γ , not with a set of them. The
difficulty arises because we have abandoned multiplicativity, consequently allowing arbitrary
sums of preclusive events to survive, since they clearly are also preclusive. But this surely is
not appropriate. (For example the sum could include co-events that differed macroscopically
from each other.) What we seem to want to do is to reduce such sums to their ‘elementary
parts’ and keep only the latter on our roster of potential realities. That is, we want to allow
multiple terms in the sum only when they are mandated by quantal interferences, not otherwise.
One way to do this is by ordering the co-events appropriately and keeping only the minimal
ones.

To that end, let me define the support of a co-event as the set of γ that comprise it when
we regard it as a subset of �. This definition works when � is finite, but not otherwise. A
more general scheme is suggested in the appendix. Anyhow, with this definition, let us say that
φ1 ≺ φ2 when supp(φ1) ⊆ supp(φ2); that is, we attribute to the co-events the order induced
by set-theoretic inclusion on the subsets of � to which they correspond. (For example,
A∗ + C∗ ≺ A∗ + B∗ + C∗.) We can then limit our potential realities to those preclusive
co-events which are minimal among all preclusive co-events. In the classical situation we
were just considering, this yields exactly the right answer, that only the ‘atomic’ co-events
of the form φ = γ ∗ are retained. In other words, we have found a condition which is
indistinguishable from multiplicativity in the classical case, but which will allow the kind
of more general co-event that we need for the quantal case. (For example, our three-slit
co-event φ = A∗ + B∗ + C∗ is certainly minimal, since no other preclusive co-events exist at
all.)

We are now prepared to take up the Hardy gedankenexperiment [8]. In a histories setting
it is convenient to conceive of this experiment in terms of the trajectories of a correlated pair
of spin- 1

2 silver atoms passing through successive Stern–Gerlach beam-splitters followed by
recombiners. If the atom on the left (say) passes first through a σz-analyser, then a recombiner,
and then a σx-analyser, it can follow any of four possible trajectories that we can label with
a pair of ± signs, and similarly for the atom on the right. In all, we have then a sample
space � of 4 × 4 = 16 members which we can label [+ + ++], . . . , [− − −−], taking the
signs in the order: z-left, z-right, x-left, x-right. For example, [+ + −−] is the trajectory such
that both atoms traverse the ‘upper’ beams in their respective z-analysers, and subsequently
the ‘lower’ beams in their respective x-analysers. (Compare the description in [9].) We
further imagine an idealized source that emits the atoms initially, with equal amplitudes for
each of the pairs

(
σ left

z , σ
right
z

) = (++), (+−), (−+), but with zero amplitude for the pair
(−−). The decoherence functional D and quantal measure µ are then determined as usual.
(See [9].)
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The 16 elements of � produce a Boolean algebra A of 216 = 65536 events, of which a
typical example, consisting of three trajectories, is17

[+ + −−] + [+ − −−] + [− + −−]. (4)

Now this particular event is important because it turns out to be precluded classically but
not quantally (like the subset A + B + C in our three-slit example). Unfortunately, there is
no space here to review why this fact is interesting for ‘hidden variables’ theories, nor is
there space even to do justice to the many interesting mathematical and causal aspects of the
gedankenexperiment as an example of quantal measure theory. Instead I will just enumerate
the results and leave their further analysis for another time.

By ‘results’ I mean here the determination of the measure-zero events and of the resulting
minimal preclusive co-events. The former (or at least all that I know of) turn out to be the
following:

[− − xy], [+ + x−] + [+ − x−], [+ + −x] + [− + −x],

where each ‘x’ or ‘y’ may be replaced by either ‘+’ or ‘−’. (In addition, as follows from the
lemmas of section 2, any A which is a disjoint sum of these also satisfies µ(A) = 0, but by
linearity that adds nothing to the determination of the preclusive co-events.) The preclusive
co-events are those that map these eight precluded events to 0 ∈ Z2. Among them are eight
minimal ones, namely,

[+ + ++]∗

[+ − ++]∗ [− + ++]∗

[− + +−]∗ [+ − −+]∗

[+ + −−]∗ + [+ − −−]∗ + [− + −−]∗

[+ + +−]∗ + [+ − +−]∗ [+ + −+]∗ + [− + −+]∗.

Of these, the first five are ‘classical’ (belonging to a single element of �), and the last two
fail to be unital, since they contain an even number of summands. The sixth is thus the
unique minimal preclusive co-event which remains unital while going beyond classical logic.
The most important thing to note is that every ‘observable event’ is assigned ‘true’ by some
unital co-event in the list, where by an ‘observable’ event I mean one that would be seen
with nonzero probability by an external agent who decided to look for it. In particular, the
event ‘both atoms in the lower beams after the second splitting’ occurs when φtrue is the sixth
co-event in the list. In this sense our scheme has added to the classically possible co-events
only the bare minimum needed to be compatible with the experimental facts, as predicted by
standard quantum mechanics.

6. Further work and final comments

The thesis of this paper has been that a quantum theory should admit a self-contained
formulation based first of all on a space � of ‘generalized trajectories’ or ‘histories’ and

17 For the sake of notational simplicity, I will not distinguish between an element γ of � and the corresponding
singleton subset {γ }, which is an element of A but not strictly speaking of �. Thus, for example, (4) denotes the
element of A given by the set whose members are the three trajectories, [++−−], [+−−−] and [−+−−]. (An object
like [+ − −+] is not realistically an element of the full physical sample space anyway, because it really comprises
several trajectories and because there is more in the world than just a pair of silver atoms. In a formalization that
took this into account, our 65 536 events would comprise a proper subalgebra of the full physical Boolean algebra;
[+ − −+] would be an atom of this subalgebra and sample spaces as such would hardly need to be mentioned.)
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secondly on a ‘quantal measure’ µ defined on �. In particular, I argued that new interpretive
possibilities arise in such a framework which promise to provide a more satisfactory concept
of ‘quantal reality’ than offered by either ‘the ensemble of instrument readings’ or ‘the
wavefunction ψ’ (with or without ‘spontaneous collapse’) or by ‘a single element of �’. To
illustrate this contention, I proposed to situate reality in a minimal preclusive co-event as
defined in section 5, which is a ‘truth-function’ φ mapping A to Z2, where A, the domain of
µ, is a Boolean algebra of ‘events’ (subsets of �), and φ is linear when addition is interpreted
as the so-called symmetric difference of subsets (corresponding to the logical connective,
exclusive-or). The ‘dynamical laws’ governing φ flowed from a condition of ‘preclusivity’,
which required that φ(A) = 0 for any A ∈ A such that µ(A) = 0. To help clarify the meaning
of the proposal, we worked out two examples, involving three-slit diffraction and EPRB-like
correlations.

However two important questions have been addressed only in the most implicit manner.
The first question is ‘How does the past condition the future?’, which gets at the formal basis
of prediction in the scheme; the second is ‘How does probability get into the story?’. Although
a full answer to either question could of course be given only in the course of an extensive
further working out of the basic ideas, sketches of the answers are already implicit in the basic
assumptions of the scheme, as set out above.

The answer to the first question resembles the answer that the Bohmian scheme would
have to give: a past reality sets a ‘boundary condition’ for future realities because the future
must prolong the past. The set of possible events codified in A grows with time in the sense that
A(t1) ⊂ A(t2) when t1 < t2. Conversely any co-event φ2 for A(t2) induces by restriction a co-
event for A(t1), and this relationship entails a condition that φ2 must satisfy, once φ1 is given.
It is this consistency condition that expresses the influence of the past on the future18. More
generally (in quantum gravity) ‘the past’ might no longer correspond to a simple subalgebra
of A, but information about it would still limit the possible φ’s in an analogous manner, e.g.,
by specifying that certain ‘stem events’ [10] occurred.

The answer to the second question is, as indicated earlier, that probability does not ‘get
in’ at all; it is supposed to be there already in the form of the ‘preclusion rule’, as applied to
events A of sufficiently small measure µ(A). In an ‘actual ensemble’ of repetitions of the same
experiment, outcomes with the wrong frequencies will (we hope) be precluded. (Note that
this is not meant to introduce some classical probability measure on the space of co-events.
Such probabilities as are meaningful are supposed to follow from the quantal measure µ on
�, together the preclusion rule and the interpretation of reality as a co-event.) It remains to be
seen whether one can capture all valid statistical predictions in this way.

Let me close with a list of open questions, some relating to the new notion of
quantal reality proposed above and some relating to ‘histories quantum mechanics’ more
generally.

• Will we be forced to accept co-events φ which assign ‘true’ to two or more macroscopically
distinct alternative events? (This being perhaps the greatest danger for the scheme of
section 5, assuming no simpler inconsistencies show up.)

• Will the ‘mutability of minimality’ lead to trouble with causality? (This being perhaps
the second greatest danger.)

• How can one (or should one) incorporate fermionic (Grassmann) variables into a histories
formulation of quantum field theory?

18 Subtle and important issues arise here, in connection with the minimality conditions we have imposed on φ; for
minimality is in general not ‘stable under time development’. One can find good examples of this in the second
gedankenexperiment of section 5.
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• Can the interpretive scheme of section 5 shed any light on whether field-particle duality
has a home in histories-based quantum field theory? (Perhaps it opens up a narrow
window for this.)

• Does the quantal random walk defined in [11] have, as conjectured, a continuum limit
that reproduces the quantum mechanics of the free non-relativistic particle? (This random
walk appears to offer one of the few fully defined examples of a genuinely non-unitary
quantal process.)

• How does relativistic causality manifest itself in a histories framework? Does there exist
a suitable notion of ‘quantum screening off’, as essayed in [9]?

• Would anyone care to do the three-slit null test of quantum mechanics described in
section 2 and in [3] and [6]?
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Appendix. Definition of the order ≺ in the general case

Given two co-events φ1,2 : A → Z2, we defined φ1 ≺ φ2 in the body of the paper by
supp φ1 ⊆ supp φ2. Although an analogous criterion can be formulated for infinite Boolean
algebras, it does not seem to be what we want. Instead the following appears to be the
appropriate generalization from finite to infinite Boolean algebras:

φ1 ≺ φ2 iff(∃S ∈ A)(∀A ∈ A)φ1(A) = φ2(SA).

It is not difficult to see that ≺ thus defined is reflexive, transitive and acyclic, and that it agrees
with the definition in the main text when A is finite.

Added note. Later work by Yousef Ghazi-Tabatabai shows that the linearity condition of section 5 is too restrictive
to accommodate certain examples, the simplest of which involves four-slit diffraction.

References

[1] Major S, Rideout D and Surya S 2006 On recovering continuum topology from a causal set Preprint
gr-qc/0604124

[2] De Angelis G F, Jona-Lasinio G and Sidoravicius V 1998 Berezin integrals and Poisson processes J. Phys. A:
Math. Gen 31 289–308 (Preprint cond-mat/9709053)

[3] Sorkin R D 1994 Quantum mechanics as quantum measure theory Mod. Phys. Lett. A 9 3119–27 (Preprint
gr-qc/9401003) (http://www.physics.syr.edu/home1/sorkin)

Salgado R B 2002 Some identities for the quantum measure and its generalizations Mod. Phys. Lett. A 17 711–28
(Preprint gr-qc/9903015)

[4] Hartle J B 1995 Spacetime quantum mechanics and the quantum mechanics of spacetime Gravitation et
Quantifications: Les Houches Summer School, Session LVII, 1992 ed B Julia and J Zinn-Justin (Amsterdam:
Elsevier) (Preprint gr-qc/9304006)

Griffiths R B 1984 Consistent histories and the interpretation of quantum mechanics J. Stat. Phys. 36 219–72
[5] Dowker F H and Ghazi-Tabatabai Y (in preparation)
[6] Sorkin R D 1997 Quantum measure theory and its interpretation Quantum Classical Correspondence:

Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability (Philadelphia, 8–11 September
1994) ed D H Feng and B-L Hu (Cambridge, MA: International Press) pp 229–51 (Preprint gr-qc/9507057)
(http://www.physics.syr.edu/home1/sorkin)

http://www.arxiv.org/abs/gr-qc/0604124
http://dx.doi.org/10.1088/0305-4470/31/1/026
http://www.arxiv.org/abs/cond-mat/9709053
http://dx.doi.org/10.1142/S021773239400294X
http://www.arxiv.org/abs/gr-qc/9401003
http://www.physics.syr.edu/home1/sorkin
http://dx.doi.org/10.1142/S0217732302007041
http://www.arxiv.org/abs/gr-qc/9903015
http://www.arxiv.org/abs/gr-qc/9304006
http://dx.doi.org/10.1007/BF01015734
http://www.arxiv.org/abs/gr-qc/9507057
http://www.physics.syr.edu/home1/sorkin


Quantum dynamics without the wavefunction 3221

[7] Isham C J 2005 A topos perspective on state-vector reduction Preprint quant-ph/0508225 and references therein
[8] Hardy L 1992 Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories Phys. Rev.

Lett. 68 2981–4
Hardy L 1993 Nonlocality for two particles without inequalities for almost all entangled states Phys. Rev. Lett.

71 1665–8
[9] Craig D, Dowker F H, Henson J, Major S, Rideout D and Sorkin R D 2006 A bell inequality analog in quantum

measure theory Preprint quant-ph/0605008 (http://www.physics.syr.edu/home1/sorkin)
[10] Brightwell G, Dowker F H, Garcı́a R S, Henson J and Sorkin R D 2002 General covariance and the ‘problem

of time’ in a discrete cosmology’ Correlations: Proc. ANPA 23rd Conference (Cambridge, UK, 16–21
August 2001) ed K G Bowden (London: Alternative Natural Philosophy Association) pp 1–17 (Preprint
gr-qc/0202097) (http://www.physics.syr.edu/home1/sorkin)

Brightwell G, Dowker F H, Garcı́a R S, Henson J and Sorkin R D 2003 ‘Observables’ in causal set cosmology
Phys. Rev. D 67 084031 (Preprint gr-qc/0210061) (http://www.physics.syr.edu/home1/sorkin) (These papers
do not employ the term ‘event’; instead they refer to ‘stem sets’, ‘stem predicates’ or ‘stem questions’.)

[11] Martin X, O’Connor D and Sorkin R D 2005 The random walk in generalized quantum theory Phys. Rev.
D 71 024029 (Preprint gr-qc/0403085) (http://www.physics.syr.edu/home1/sorkin)

http://www.arxiv.org/abs/quant-ph/0508225
http://dx.doi.org/10.1103/PhysRevLett.68.2981
http://dx.doi.org/10.1103/PhysRevLett.71.1665
http://www.arxiv.org/abs/quant-ph/0605008
http://www.physics.syr.edu/home1/sorkin
http://www.arxiv.org/abs/gr-qc/0202097
http://www.physics.syr.edu/home1/sorkin
http://dx.doi.org/10.1103/PhysRevD.67.084031
http://www.arxiv.org/abs/gr-qc/0210061
http://www.physics.syr.edu/home1/sorkin
http://dx.doi.org/10.1103/PhysRevD.71.024029
http://www.arxiv.org/abs/gr-qc/0403085
http://www.physics.syr.edu/home1/sorkin

	1. Introduction
	2. The path integral as a quadratic measure
	3. The preclusion concept: towards an interpretation of 
	4. The antinomy and three responses to it
	4.1. The problem with preclusion
	4.2. First response: it's here, it's queer, get used to it!
	4.3. Second response: limited preclusion
	4.4. Third response: a modified logic

	5. An illustrative proposal: reality as a co-event
	6. Further work and final comments
	Acknowledgments
	Definition of the order
	References

